Организация и функция синапса

Анатомия и физиология Просмотров: 22980

Синаптическая передачаВ синапсе различают пресинаптическую часть, постсинаптическую часть и расположенную между клетками синаптическую щель (см. рис 6-1Б и 6-6).

Межнейронный (аксосоматический) синапс

Рис. 6-1. Межнейронный (аксосоматический) синапс. А. На поверхности перикариона заканчивается множество (например, на мотонейронах до 10 000) концевых разветвлений (пресинаптических терминалей) аксонов от других нейронов; это аксосоматические синапсы. Один из них (1) представлен в правой части схемы. 2 — ветвления одного из дендритов. 3 — место отхождения аксона (аксонный холмик). 4 — миелинизированный аксон. Б. Между концевой терминалью аксона (5) пресинаптического нейрона и поверхностью перикариона постсинаптического нейрона (10) находится синаптическая щель (8) с диффундирующими в ней молекулами нейромедиатора (9). Для терминали аксона (пресинаптическая часть синапса, 5) характерны митохондрии (6) и содержащие молекулы нейромедиатора синаптические пузырьки (7). В постсинаптическую мембрану вмонтированы рецепторы для связывания нейромедиатора и многочисленные ионные каналы (11). Помимо аксосоматических, между нейронами образуются аксоаксональные, аксодендритические и дендродендритические синапсы. Большинство межнейронных синапсов относится к аксодендритическим (например, в коре больших полушарий — до 98%).


Пресинаптическая часть

Пресинаптическая часть содержит синаптические пузырьки с нейромедиатором, элементы цитоскелета и митохондрии. В пресинаптическую мембрану встроены потенциалозависимые Ca2+?каналы. При поступлении ПД к терминальному расширению мембрана деполяризуется, Ca2+?каналы открываются, ионы Ca2+ входят в терминаль, запуская в активных зонах процесс слияния мембраны синаптического пузырька и пресинаптической мембраны, т.е. секрецию (экзоцитоз) нейромедиатора (рис. 6–6, позиции 2–4).

Роль Са2+. Слияние синаптических пузырьков с пресинаптической мембраной происходит при увеличении концентрации Са2+ в цитозоле нервной терминали. Белок синаптического пузырька синаптотагмин связывается с Са2+ и тем самым принимает участие в регуляции экзоцитоза (в том числе путём реорганизации примембранного цитоскелета).

Синаптические пузырьки. Молекулы нейромедиатора накапливаются в нервной терминали, находясь внутри синаптических пузырьков вместе с АТФ и некоторыми катионами. В каждом пузырьке находится несколько тысяч молекул нейромедиатора, что составляет квант нейромедиатора.

Синтез нейромедиатора. Ферменты, необходимые для образования нейромедиаторов, синтезируются в перикарионе и транспортируются к синаптической терминали по аксонам (рис. 6–4).

Типы пузырьков — мелкие (диаметр порядка 50 нм) и крупные (диаметр 100–200 нм). Мелкие синаптические пузырьки содержат «классические» медиаторы (см. ниже). Крупные везикулы содержат нейропептиды.

Секреция. Когда ПД достигает нервной терминали, синаптические пузырьки сливаются с пресинаптической мембраной, что приводит к выделению квантов нейромедиатора в синаптическую щель. Незначительное количество квантов нейромедиатора постоянно (спонтанно) секретируется в синаптическую щель.

Узнавание. Предшествующий слиянию синаптических пузырьков и плазмолеммы процесс узнавания синаптическим пузырьком пресинаптической мембраны происходит при взаимодействии мембранных белков (синаптобревин, SNAP-25, синтаксин и другие).

Влияние токсинов. Синтаксин, SNAP-25 и синаптобревин — мишени ботулинического токсина, необратимо подавляющего слияние синаптических пузырьков с пресинаптической мембраной. Мишень столбнячного токсина — синаптобревин.

Активные зоны (рис. 6–3). Секреция нейромедиатора осуществляется в специализированных участках пресинаптического нервного окончания — активных зонах — участках утолщения пресинаптической мембраны. Активная зона состоит из «плотной полоски» на пресинаптической мембране и сгруппированных около неё синаптических пузырьков, потенциалозависимых кальциевых каналов, специальных белков экзоцитоза и элементов цитоскелета. Количество активных зон в нервно-мышечном синапсе достигает 30–40, в межнейронных синапсах — около десятка. Активные зоны расположены против скоплений рецепторов в постсинаптической мембране, что уменьшает задержку в передаче сигнала, связанную с диффузией нейромедиатора в синаптической щели.

Активные зоны нервно-мышечного синапса

Рис. 6-3. Активные зоны нервно-мышечного синапса расположены напротив постсинаптических складок — участков скоплений холинорецепторов. Пресинаптическая мембрана слева расщеплена на два листка.

Жизненный цикл синаптических пузырьков (рис. 6–4). Синаптические везикулы образуются в теле нейрона в эндоплазматическом ретикулуме и комплексе Гольджи (1) и с аксонным транспортом поступают в нервные окончания (2).

Образование, транспорт и экзоцитоз синаптических пузырьков

Рис. 6-4. Образование, транспорт и экзоцитоз синаптических пузырьков.

В нервном окончании мелкие синаптические пузырьки посредством активного транспорта заполняются медиатором (3) и передвигаются к пресинаптической мембране (4). Освобождение медиатора (5) может осуществляться посредством экзоцитоза с полным («классический» механизм) либо неполным (механизм «kiss and run») слиянием. Первый вид экзоцитоза сопровождается встраиванием мембраны везикулы в пресинаптическую, опорожнением пузырька, а затем посредством эндоцитоза образуются покрытые клатрином везикулы (6), которые затем проходят стадию эндосомы (7) и снова заполняются медиатором (3). Второй вид экзоцитоза характеризуется образованием временной поры, соединяющей полость пузырька с синаптической щелью. После выделения медиатора везикула не встраивается в пресинаптическую мембрану, а отпочковывается от неё (8) и повторно заполняется медиатором (3). Крупные синаптические везикулы заполняются медиатором в теле клетки (9), их экзоцитоз происходит в других участках пресинаптической мембраны, а эндоцитоз опорожнённых пузырьков отсутствует (10).


Синаптическая щель 

Синаптическая щель — промежуток между пре- и постсинаптическими мембранами шириной 20–35 нм. В синаптическую щель из синаптических пузырьков выделяются молекулы нейромедиатора и путём диффузии достигают постсинаптической мембраны. В синаптической щели находятся ферменты, расщепляющие молекулы нейромедиатора (например, ацетилхолинэстераза, гидролизующая ацетилхолин), а в пресинаптическую мембрану вмонтированы переносчики, осуществляющие перенос нейромедиаторов–аминокислот и биогенных аминов (например, глутамата, аспартата, норадреналина) в пресинаптическую терминаль.

Таким образом, удаление нейромедиатора из синаптической щели происходит двояко: инактивация ферментом или захват пресинаптической терминалью.

Инактивация нейромедиатора. Кратковременность взаимодействия нейромедиатора с рецептором достигается разрушением нейромедиатора специальными ферментами (например, ацетилхолина — ацетилхолинэстеразой).

Захват нейромедиатора. В большинстве синапсов передача сигналов прекращается вследствие быстрого захвата нейромедиатора пресинаптической терминалью.

Транспортёры. Захват норадреналина [1] осуществляют специфические Na+- и Cl-транспортирующие белки (например, норадреналин–транспортирующий белок 1) — мишени трициклических антидепрессантов (например, дезипрамин и имипрамин). Система захвата биогенных аминов — точка приложения антидепрессантов и таких препаратов, как кокаин и амфетамины. Дефекты транспортёров норадреналина и серотонина [2] — кандидаты на роль первопричины при психиатрических расстройствах, таких как маниакально-депрессивные состояния.


Постсинаптическая часть

В постсинаптической мембране находятся рецепторы, чувствительные к нейромедиатору. Взаимодействие нейромедиатора с рецептором приводит к изменению МП постсинаптической мембраны. В зависимости от характера возникающего постсинаптического потенциала (деполяризация или гиперполяризация) различают возбуждающие синапсы и тормозные синапсы.

Возбуждающие синапсы. При деполяризации возбуждение по плазмолемме электротонически распространяется до аксонного хол­мика, где генерируются ПД (рис. 6-5).

Межнейронный холинергический синапс

Рис. 6-5. Межнейронный холинергический синапс [7]. Трансмембранный перенос ионов указан стрелками. При связывании ацетилхолина с никоти­новым холинорецептором (н-холинорецептор) в составе последнего откры­вается ионный канал, через пору которого проходят ионы натрия и калия, приводя к деполяризации постсинаптической мембраны (постеинаптичес-кий потенциал). Таким образом, н-холинорецептор является лиганд-зави­симым ионным каналом, т.е. ионотропным рецептором (см. рис. 6-6)

Тормозные синапсы. При гиперполяризации возбудимость мембраны уменьшается, и ПД не генерируются.

Характер электрического ответа постсинаптической стороны и дальнейший физиологический эффект определяются свойствами рецепторов. С точки зрения механизма открытия ионных каналов и последующей де- или гиперполяризации (рис. 6-6) постсинаптические рецепторы подразделяют на ионотропные рецепторы (от «ион») и метаботропные рецепторы (от «метаболизм»).

Ионотропные рецепторы сами по себе являются ионными каналами. Классический пример — н?холинорецепторы (рис. 6–6, слева).

Метаботропные рецепторы связаны с ферментами (аденилатциклаза или фосфолипаза C) через G?белок. Классический пример — м?холинорецепторы (рис. 6–6, справа).

Ионотропные и метаботропные рецепторы в холинергических синапсах

Рис. 6–6. Ионотропные и метаботропные рецепторы в холинергических синапсах [2]

Постсинаптические плотности. Область, расположенная с цитоплазматической стороны постсинаптической мембраны, в электронном микроскопе выглядит как зернистая плотная полоска, содержащая множество белков. К ним относятся рецепторы нейромедиаторов, протеинкиназы, структурные и цитоскелетные белки, а также белки, осуществляющие эндоцитоз и гликолиз.

Дендритные шипики — характерная особенность 90% возбуждающих синапсов в ЦНС. Эти мелкие (менее 1 мкм длиной) удлинённые структуры, выступающие над поверхностью дендритов и имеющие постсинаптические плотности. Их функция точно не установлена; возможно, они увеличивают поверхность постсинаптической стороны или являются резервуаром для Ca2+.


Этапы синаптической передачи

Синаптическая передача возможна при реализации ряда последовательных процессов: синтез нейромедиатора, его накопление и хранение в синаптических пузырьках вблизи пресинаптической мембраны, высвобождение нейромедиатора из нервной терминали, кратковременное взаимодействие нейромедиатора с рецептором, встроенным в постсинаптическую мембрану; разрушение нейромедиатора или захват его нервной терминалью. На рис. 6-7 представлены стандартные этапы синаптической передачи.

Этапы синаптической передачи

Рис. 6–7. Этапы синаптической передачи [2].

1. Молекулы нейромедиатора поступают в мембранные синаптические пузырьки, располагающиеся в пресинаптической терминали и концентрирующиеся в активных зонах пресинаптической мембраны.

2. Приходящий по аксону ПД деполяризует пресинаптическую мембрану.

3. Вследствие деполяризации открываются потенциалозависимые Са2+?каналы, и Са2+ поступает в терминаль.

4. Увеличение внутриклеточного [Са2+] запускает слияние синаптических пузырьков с пресинаптической мембраной и выброс нейромедиатора в синаптическую щель (экзоцитоз).

5. Кванты нейромедиатора, поступившие в синаптическую щель, диффундируют в ней. Часть молекул нейромедиатора связывается со специфичными для них рецепторами постсинаптической мембраны.

6. Связавшие нейромедиатор рецепторы активированы, что приводит к изменению поляризации постсинаптической мембраны либо прямо (поступление ионов через ионотропные рецепторы) либо опосредованно — активация ионных каналов через систему G?белка (метаботропные рецепторы).

7. Инактивация нейромедиаторов происходит либо путём их ферментной деградации, либо молекулы нейромедиатора захватываются клетками.

Таким образом, синаптическая передача — сложный каскад событий. Многие неврологические и психиатрические заболевания сопровождаются нарушением синаптической передачи. Различные ЛС влияют на синаптическую передачу, вызывая нежелательный эффект (например, галлюциногены) или, наоборот, корригируя патологический процесс (например, психофармакологические антипсихотические средства).


Постсинаптические потенциалы

Вызванные и спонтанные постсинаптические потенциалы (ПСП). Нейромедиаторы при связывании с ионотропными рецепторами приводят к возникновению ПСП. Количество квантов медиатора, содержащееся в одном ПСП, определяет его квантовый состав. При возбуждении пресинаптической терминали ПД и секреции множества синаптических пузырьков регистрируются вызванные, или многоквантовые ПСП. Существуют также спонтанные, или миниатюрные ПСП, обусловленные случайным (в отсутствии ПД) экзоцитозом медиатора в синаптическую щель. Эти сигналы обычно одноквантовые и незначительны по амплитуде.

Синаптическая задержка. Между моментом поступления ПД к пресинаптическому нервному окончанию и временем возникновения ПСП существует временной интервал в 0,5–1 мс, получивший название синаптической задержки. Она объясняется прежде всего временем, необходимым для выделения медиатора и его действия на постсинаптическую мембрану. Наиболее длительным при этом является процесс запуска секреции медиатора.

Возбуждающие и тормозные ПСП. ПСП могут быть либо возбуждающими (деполяризующими), либо тормозными (гиперполяризующими).

Возникновение потенциала действия в постсинаптическом нейроне. Постоянное взаимодействие возбуждающей и тормозящей активности на постсинаптическом нейроне приводит к флуктуации МП, представляющего собой алгебраическую сумму деполяризующих и гиперполяризующих влияний. В этом отношении дендритная зона (дендриты и перикарион, см. рис. 5–1) действует как определённого вида интегратор. Участком нервной клетки с самым низким порогом для генерации ПД является аксонный холмик, содержащий в своей мембране в 7 раз больше потенциалозависимых Na+?каналов, чем дендритная зона, и соответственно может генерировать ПД с большей лёгкостью. Возникший ПД распространяется в двух направлениях: вдоль аксона и по телу нейрона. В теле нейрона и дендритах ретроградного направления ПД затухает, так как в этих отделах клетки мало потенциалозависимых Na+?каналов. В терминальном расширении аксона ПД приводит к выделению медиатора в синаптическую щель.

Орлов Р.С., Ноздрачёв А.Д. Нормальная физиология. - М.: ГЭОТАР-Медиа, 2009. 688 с. Глава 6. Синапсы. - Организация и функция синапса. С. 79-87.



[1] Норадреналин — деметилированный предшественник адреналина — 2-амино-1-(3,4-дигидроксифенил) этанол. Секретируется из большинства постганглионарных симпатических волокон и является н. между многими нейронами ЦНС (например, гипоталамус, голубоватое место). Образуется из дофамина путём гидролиза при помощи дофамин-b-гидроксилазы. Норадреналин хранится в синаптических пузырьках, после высвобождения взаимодействует с адренорецепторами, реакция прекращается в результате захвата норадреналина пресинаптической частью. Уровень норадреналина определяется активностью тирозин гидроксилазы и моноаминооксидазы. Моноаминооксидаза и катехол-О-метилтрансфераза переводят норадреналин в неактивные метаболиты (норметанефрин, 3-метокси-4-гидрокси-фенилэтиленгликоль, 3-метокси-4-гидроксиминдальная кислота). Норадреналин — мощный вазоконстриктор, эффект происходит при взаимодействии норадреналина с ГМК стенки кровеносных сосудов. Транспортёры. Захват норадреналина в межклеточном пространстве (синаптической щели) осуществляют специфические Na+- и Cl-транспортирующие белки (например, норадреналин-транспортирующий белок 1. Эти белки — мишени трициклических антидепрессантов (например, дезипрамин и имипрамин). Система захвата биогенных аминов — точка приложения антидепрессантов и таких препаратов, как кокаин и амфетамины. Дефекты транспортёров норадреналина и серотонина — кандидаты на роль первопричины при психиатрических расстройствах, таких как маниакально-депрессивные состояния.

[2] Серотонин (5-гидрокситриптамин) образуется в тромбоцитах и других клетках из 5?окситриптофана в результате его декарбоксилирования неспецифической декарбоксилазой ароматических L?аминокислот. Сосудосуживающее вещество, ингибитор секреции желудочного сока, стимулятор сокращения ГМК; присутствует в относительно высоких концентрациях в некоторых областях ЦНС (серотонин — нейромедиатор многих центральных нейронов, например ядра шва), многих периферических тканях и клетках, а также в опухолях. Расщепляется серотонин моноаминооксидазой с образованием 5?гидроксииндолуксусной кислоты. Депрессия характеризуется снижением количества норадреналина и серотонина и увеличением экспрессии их рецепторов. Антидепрессанты уменьшают число этих рецепторов. Маниакальный синдром. При этом состоянии увеличивается уровень норадреналина на фоне снижения количества серотонина и адренорецепторов. Литий снижает секрецию норадреналина, образование вторых посредников и увеличивает экспрессию адренорецепторов. Аутизм. Гиперсеротонинемия, но в 30–50% случаев без явных нарушений обмена серотонина в мозге.

Печать