Синапсы в нейронных сетях

Анатомия и физиология Просмотров: 16812

Cинапсы в нейронных сетяхВыше была рассмотрена физиология единичного синапса — важного элемента взаимодействия между нейронами, но в условиях целостного организма основная задача нервной системы — передача и переработка информации — не может быть сведена к работе отдельных синапсов.

Напротив, функции нервной системы выполняются только при условии взаимодействия посредством синапсов множества нервных клеток — нейронных цепочек и сетей. При этом в нейронных сетях проявляются такие важные свойства как торможение, утомление, суммация, окклюзия, облегчение, депрессия и потенциация.

Синаптическое торможение

Торможение является одним из фундаментальных свойств ЦНС и было открыто в 1863 г. И.М. Сеченовым, который обнаружил подав­ление активности спинного мозга при раздражении структур среднего мозга.

Синаптическим торможением называется влияние пресинаптического нейро­на, предотвращающее или прекращающее возбуждение постсинаптического нейрона.

Синаптическое торможение играет важную физио­логическую роль в ЦНС, ограничивая избыточное возбуждение в нейронных сетях. Различают несколько видов синаптического тормо­жения (постсинаптическое, пресинаптическое и возвратное).

Постсинаптическое торможение

Постсинаптическое торможение (рис. 6-8, 1В) наблюдается при выделении медиатора (например, ГАМ К), повышающего прово­димость постсинаптической мембраны для Cl- или/и К+. При этом возникают тормозные постсинаптические потенциалы, гиперпо-ляризующие постсинаптическую мембрану, понижающие возбу­димость клетки и препятствующие генерации ПД.

Синаптическое торможение

Рис. 6-8. Синаптическое торможение. 1 (слева) — пресинаптическое и пост-синаптическое торможение; А — возбуждающее окончание; Б — нейрон, вызывающий пресинаптическое торможение; В — нейрон, вызывающий постсинаптическое торможение. 2 (справа) — возвратное торможение

Пресинаптическое торможение

Пресинаптическое торможение осуществляют нейроны, аксоны которых оканчиваются (Б) на возбуждающих синаптических окон­чаниях другого нейрона (А), образуя аксоаксональные синапсы (рис. 6-8, 1Б). Пресинаптическое торможение выполняется по­средством одного из двух механизмов.

- Пресинаптический тормозным нейрон Б выделяет нейромедиатор, который увеличивает Cl--проводимость и вызывает ги­перполяризацию мембраны возбуждающего нервного оконча­ния А. Это приводит к снижению возбудимости и увеличению порога генерации ПД возбуждающего окончания.

- Пресинаптический возбуждающий нейрон выделяет нейромедиатор, вызывающий длительную деполяризацию мембраны, что приводит к инактивации потенциалозависимых Na+-каналов нервного окончания и, соответственно, торможению его актив­ности.

Пресинаптическое облегчение

Противоположный пресинаптическому торможению эффект оказывает пресинаптическое облегче­ние. Поскольку серотонин, выделяющийся в аксоаксональных синапсах, повышает содержание цАМФ в нервном окончании, то это приводит к закрытию К+-каналов, замедлению скорости реполяризации, увеличению продолжительности пачек ПД. В результате возрастает количество входящих ионов Са2+ и уве­личивается секреция нейромедиатора.

Возвратное торможение

Возвратное торможение  представлено на рис. 6-8, 2. Нейроны ЦНС могут тор­мозить сами себя путём отрицательной обратной связи. Так, мо­тонейроны спинного мозга сразу после отхождения аксона от тела нервной клетки, посылают возвратные коллатерали, образу­ющие синапсы с тормозными вставочными нейронами (клетки Реншоу). Клетки Реншоу иннервируют мотонейроны, направив­шие к ним возвратные коллатерали. Этот нейронный круг с об­ратной связью работает следующим образом. Мотонейрон, по­сылая сигналы к мышцам, одновременно активирует через возвратную коллатераль клетку Реншоу. Возбуждённая клетка Рен­шоу выделяет из пресинаптических терминалей глицин, и под его влиянием замедляются или тормозятся разряды мотонейро­на. Возвратное торможение наблюдается также в коре больших полушарий и лимбической системе.


Суммация, окклюзия и утомление

Суммация

В мозге дендритная зона (см. рис. 5-1) одного нейро­на формирует с другими нервными клетками множество синап­сов (до сотен, тысяч и десятков тысяч). Когда на мембране ден­дритной зоны одного нейрона одновременно возникают постсинаптические потенциалы (ПСП) в нескольких синаптических контактах, то происходит пространственная суммация этих потенциалов; если же несколько ПСП возникают в одном си­напсе через короткий временной промежуток, то наблюдается их временная суммация.

На рис. 6-9 представлена гипотетическая ней­ронная сеть, в которой происхо­дит суммация влияний нейронов А и Б на нейрон Г. В случае воз­буждающих ПСП одновременное воздействие нейронов А и Б на нейрон Г может привести к гене­рации ПД, тогда как раздельная активация синаптических входов вызовет лишь подпороговый ответ.

Пространственная и временная сум­мация облегчает достижение кри­тического уровня деполяризации и генерацию ПД.

Напротив, при суммации тормозных ПСП будет наблюдаться более выраженная гиперполяризация и увеличение порога генерации ПД.

Суммация и окклюзия в нейронных сетях

Рис 6-9. Суммация и окклюзия в нейронных сетях

Окклюзия

В некоторых случаях раздельная активация нейронов более эффективна, чем одновременная. Этот феномен, называе­мый окклюзией, рассмотрен на рис. 6-9. Когда для генерации ПД в нейроне достаточно активации одного афферентного вхо­да, раздельная активность нейронов А и Б приведёт к активации четырёх нервных клеток (В+Г, Г+Д), но при одновременном воз­буждении нейронов А и Б будет активировано лишь три нейрона (В+Г+Д). Причиной окклюзии служит конвергенция афферент­ных входов нейронов А и Б на нейроне Г.

Утомление

Повторная стимуляция возбуждающих синапсов с высокой частотой вначале вызывает появление большого числа разрядов в постсинаптических нейронах, но частота разрядов в течение короткого времени уменьшается. Это состояние называ­ется утомлением синаптической передачи. Утомление синапти-ческой передачи — важное свойство ЦНС, предохраняющее от перевозбуждения (так, во время эпилептического припадка утом­ление предохраняет ЦНС от серьёзных повреждений). Развитие утомления связано с истощением запасов нейромедиатора: их достаточно для генерации 10 000 ПД, этот запас может быть из­расходован в несколько минут, а иногда и секунд.


Пластичность синапсов

В ходе функционирования синапсы подвергаются функциональным и морфологическим перестройкам. Этот процесс назван синаптической пластичностью. Наиболее ярко такие изменения проявляются при высокочастотной, или тетанической активности, являющейся естественным условием функционирования синапсов in vivo. Например, частота импульсации вставочных нейронов в ЦНС достигает 1000 Гц. Пластичность (рис. 6-10) может проявляться либо в увеличении (облегчении, потенциации), либо уменьшении (депрессии) эффективности синаптической передачи. Выделяют кратковременные (длятся секунды и минуты) и долговременные (длятся часы, месяцы, годы) формы синаптической пластичности. Последние интересны тем, что они имеют отношение к процессам научения и памяти.

Формы синаптической пластичности

Рис. 6–10. Формы синаптической пластичности

Кратковременные формы синаптической пластичности

К ним относятся облегчение, потенциация, депрессия и привыкание.

Облегчение. В процессе активности в синапсах с исходно низким уровнем секреции нередко происходит увеличение амплитуды постсинаптического потенциала (ПСП). Этот процесс — облегчение — имеет пресинаптическую природу и объясняется теорией «остаточного кальция». Согласно этой теории, в процессе высокочастотной активности в пресинаптической терминали наблюдается повышение концентрации Са2+, вследствие чего происходит увеличение вероятности освобождения квантов нейромедиатора.

Потенциация, посттетаническая потенциация (сенситизация). Увеличение ПСП при высокочастотной активности может иметь и постсинаптическую природу. Такой вид пластичности связан с повышением чувствительности постсинаптических рецепторов к нейромедиатору и называется потенциацией. Величина ПСП может некоторое время (секунды и минуты) оставаться повышенной и после окончания тетанической активности. Это посттетаническая потенциация (в ЦНС — сенситизация).

Депрессия и привыкание (габитуация). В синапсах с исходно высоким уровнем секреции высокочастотная активность может приводить к уменьшению величины ПСП. Этот процесс — депрессия — связан преимущественно с истощением запаса нейромедиатора в пресинаптическом нервном окончании. Депрессия является одним из механизмов привыкания (габитуации).

Долговременные формы синаптической пластичности

Долговременная потенциация — быстро развивающееся устойчивое усиление синаптической передачи в ответ на высокочастотное раздражение. Этот вид пластичности может продолжаться дни и месяцы (рис. 6–11). Долговременная потенциация наблюдается во всех отделах ЦНС, но наиболее полно изучена на глутаматергических синапсах в гиппокампе.

Существует три основных подтипа ионотропных глутаматных рецепторов: NMDA (чувствительны к N-метил-D-аспартату), AMPA (связываются с ?-амино-3-гидрокси-5-изоксазолпропионовой кислотой) и каинатные рецепторы. NMDA- и AMPA–рецепторы играют ключевую роль в возникновении и проявлении долговременной потенциации. NMDA–рецепторы обладают значительной проницаемостью для ионов Са, однако при нормальном уровне МПП они заблокированы ионами Mg. Магниевый блок снимается при сильной деполяризации мембраны. AMPA рецепторы проницаемы для ионов Na+ и К+, и ответственны за возникновение ПСП в глутаматергических синапсах.

Механизм долговременной потенциации

- При высокочастотной стимуляции нейронов гиппокампа выделяется большое количество глутамата, деполяризуется постсинаптическая мембрана и происходит активация NMDA–рецепторов. Значительный кальциевый ток через эти каналы приводит к повышению концентрации ионов Са2+ в постсинаптическом нейроне.

- Ионы Са2+ связываются с внутриклеточным белком — кальмодулином (Кальмодулин — Ca2+-связывающий белок; связывание с Ca2+ в цитоплазме клеток изменяет его конформацию и превращает его в активатор ферментов, например, фосфодиэстераз или киназы лёгкой цепи миозина в ГМК; регулятор процесса сокращения ГМК и многих внутриклеточных событий). Образовавшийся комплекс активирует фермент — Са2+-кальмодулинзависимую протеинкиназу II.

- Са2+-кальмодулинзависимая протеинкиназа II фосфорилирует AMPA–рецепторы. После фосфорилирования возрастает их ионная проводимость, что приводит к увеличению постсинаптического ответа на каждый квант нейромедиатора. Кроме того, данный фермент мобилизует дополнительные AMPA–рецепторы из цитоплазмы в постсинаптическую мембрану, что приводит к увеличению квантового состава ПСП.

Долговременная депрессия также возникает в ответ на высокочастотное раздражение и проявляется в виде длительного ослабления синаптической передачи. Этот вид пластичности имеет сходный механизм с долговременной потенциацией, но развивается при более низкой внутриклеточной концентрации ионов Са2+.

В заключение приведём данные о продолжительности различных событий, происходящих в синапсах на их постинаптической стороне: из рис. 6–11 видно, что продолжительность процессов имеет широкий разброс — от 1 мсек (деполяризация постсинаптической мембраны за счёт ионотропных рецепторов) до дней (модуляция синаптической передачи).

Сравнительная продолжительность различных событий в синапсах

Рис. 6–11. Сравнительная продолжительность различных событий в синапсах [2]. Логарифмическая шкала.


Влияние ацидоза, алкалоза и гипоксии на синаптическую передачу

Алкалоз резко повышает возбудимость нейронов. Так, повышение рН артериальной крови с нормальных значений 7,4 до 7,7 может вызвать эпилептический приступ.

Ацидоз значительно подавляет активность нейронов. Снижение рН с 7,4 до значений ниже 7,2 вызывает коматозное состояние (например, при тяжёлом сахарном диабете или уремическом ацидозе).

Гипоксия может привести к полной потере возбудимости некоторых нейронов. Например, когда мозговой кровоток временно прекращается (на 3–7 сек), человек теряет сознание.

 Орлов Р.С., Ноздрачёв А.Д. Нормальная физиология. - М.: ГЭОТАР-Медиа, 2009. 688 с. Глава 6. Синапсы. - Cинапсы в нейронных сетях. С. 88-93 + CD-ROM.

Печать